
Pergamon 
3. Appl. M&v Mechs, Vol. 57, No. 6, pp. 109~1099,1993 

Copyright Q 1994 Ebevier Science Lid 
Printed in Great Britaii. AU rights reserved 

002-892893 $24.00+0.00 
0021~8928(94)EOOl5-3 

THE GROWTH OF A CIRCULAR HYDRORUPTURE 
CRACK IN AN ELASTIC SPACE WHEN A PLASTIC 

MATERIAL IS FORCED IN? 

0. P. ALEKSEYENKO and A. M. VAISMAN 

Novosibirsk 

(Received 8 September 1992) 

An axisymmetric problem of the growth of a circular hydrorupture crack whose cavity is filled with a 

non-standard plastic flowing material is considered. The cases of complete and incomplete penetration 

are analysed. Prelimiting states of a crack of fixed dimensions are discussed. 

IN HYDRORUPTURE problems, starting with the classical ones [l], the filling material is usually 
considered to be a fluid. But sometimes, especially in the case. of experimental hydrorupture 
carried out to analyse the properties and state of a rock deposit, one is interested in fillers whose 
properties are close to ideal plasticity, for example some plastic greases [2]. Since there is 
practically no leakage and the resistance is independent of the flow velocity, it becomes possible 
to fix any state of the crack prior to measurement. Moreover, significant distortion of the edge 
contour can be eliminated,S which has been discovered in earlier experiments with plasticine 
[31. 

Despite the obvious physical differences, the structure of the equations in the problem of a 
plastic layer in Bridgman anvils [4] is quite similar to that in the problem under consideration. 
However, the specific features of hydrorupture equations [5, 61 make it necessary to modify 
them due to the divergence of the iterative scheme. 

1. Suppose that a circular planar crack of radius L at a given instant of time is developing in 
an elastic space because of a filling material with plastic properties being forced into the crack 
cavity from a point source at its centre. It is assumed that the flowing material does not lose 
contact with the crack edges and the pressure P(X) vanishes on the boundary X = I of the filled 
region (X is the radial coordinate of a cylindrical system of coordinates with origin at the crack 
centre). 

For slow flow of an ideally plastic material in a narrow channel the pressure is distributed 
according to the equation [7] 

dPldX = -T,,lW (1.1) 

where W denotes the half-width of the crack at a distance X from the centre and To is the friction 
stress on the crack edges. We note that the ideal plasticity condition may be violated, but if the 
rheology of the flowing material and its interaction with the cavity walls are such that for any 
radius greater than some small distance compared with L the shear stress in the filler does not 
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exceed the order of magnitude of T,(X), then Eq. (1.1) in the boundary layer approximation 
follows directly from the general equations of equilibrium in terms of stresses. If (1.1) is 
satisfied, then for the system of equations stated below to be closed, it suffices to specify the law 
of sliding between the filler and the walls, in particular, in the form To =const used below, 
without any detailed properties of the flowing material inside the crack cavity. 

The equation implies the estimate 

PA-== To/W. (l-2) 

for the characteristic values P. and W. of the pressure and width, respectively, In view of this 
estimate, in the case when the filler spreads into a region of the crack of radius comparable with 
L, the ratio of the shear and normal stresses has the order of magnitude of the characteristic 
strain W, /L. This means that it suffices to consider only normal rupture cracks, i.e. neglect the 
shear stresses in the formulae expressing the displacements of crack edges in terms of the 
boundary forces applied to them. Otherwise, this would be equivalent to using quadratic 
corrections with respect to the deformations within the framework of the linear theory of 
elasticity. 

The width of a normal rupture crack can be expressed in terms of the pressure on its edges by 
Sneddon’s formula [S]. In problems concerned with hydrorupture it provides more convenient 
to use the elementary form 

W(X) = -$IPTX~, (L2-X2)X- r ‘i x2-x2 x 
car, $.$. [ 11 a, 

mx(X,X, ) 2- 
(1.3) 

Here L”(X) is the radial pressure gradient, max(X, X1) is the maximum of the two numbers in 
parentheses, and D = XE(1 -v)” is a combination of the standard elastic constants. 

As usual, the effect of the rock pressure P, on the width of a crack lying in a horizontal plane 
is taken into account by subtracting 

lVg = 2(r&(L2 - X2)X P 
8 (1.4 

from the right-hand side of (1.3) [S]. 
The relation between the asymptotic form of the width at the crack edge and the stress 

intensity factor K is given by [S] 

limx_,‘ W(X)(L-X)-K=(2/a)xK/D (1.5) 

There is a critical value K = K, assumed to be constant, corresponding to the crack growth. 
The integral law of conservation of mass for an incompressible flowing material 

n=4a;xwdx (1.6) 
0 

closes the system of equations. Here n is the volume of the filing material forced into the crack. 

2. It proves convenient to analyse the above system of equations in dimensionless form. For 
the coordinates X and I we change to linear units using the formulae X = Lsincp and 
I = Lsiny. For the basic crack parameters we introduce scaling multipliers, denoted by the 
same letters with an asterisk 

P.=(~$TcDT~)~, W,=LibJP,, Ci,=4ti2W,, 

r, =x(&l /(2m)2 

(2.1) 
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We write the formulae of transition to dimensionless form as 

P=P*p, P*=P.pg, L=LJ, a=ao 

W= W,ucos Q, w, =w.~,~S Q 

(2.2) 

The dimensionless variables are denoted by lower-case letters. 
From (1.4), (2.1), and (2.2) we get 

pg = ug = (j$ lcDTo+ Pg (2.3) 

We will now formulate the system of equations in terms of the new variables. Using (l.l), we 
eliminate P’ from (1.3) and take into account the contribution IV, of the rock pressure P, on the 
width of the crack. Changing to the dimensionless variables we obtain after some simple 
computations 

U(Q) = -I$ + I A(Q, ,w) 
_dw 

0 WY) ’ 
Q E [O,n/21, W E [O,Y1 

sin’ q -sin2 w K 

sin2 q - sin2 Q 
cmrldrl 

(2.4) 

(2.5) 

Note that the arguments <p and $ have different ranges of values, but if Q > y, the corres- 
ponding part of U(Q) can be easily determined from its values in the interval [0, y] using (2.4). 
In particular, for Q = x/ 2 we have 

rl-cosW 
u,=2)(11:/2)=--ug+j 

0 U(V) 
hv (2.6) 

In the interval Q E [0, ~1 relation (2.4) is a non-linear integral equation in U(Q), which must be 
solved. All the remaining parameters of the crack can be expressed in terms of V. Indeed, 
changing to dimensionless variables with the aid of (2.1) and (2.2) in (l.l), (1.5) and (1.6), we 
obtain 

P(Q)=!% OCQGY; l=‘Ui2; w = i u(yr)sin~cos2~@ 
0 

(2.7) 

Since A (Q, y) > 0, we observe that y decreases as the crack increases, the least admissible 
value y, of the degree of filing being attained in the limit as I + =, when z)~ + 0. Then, by (2.6) 

and (2.4) takes the form 

"(Q)=? “:;“;;v),, A,(Q,‘Y)=A(Q,‘#)-(l-COSW) 
0 

(2.8) 

(2.9) 

3. We will now solve (2.4). As has been mentioned, the difficulty is due to the divergence of the 
standard iterative scheme 
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%+,(rp)=-u,+~~~ (n=0,1,2,...) 
n 

As an illustration we present a numerical example for a weightless medium, because the 
approximations are bounded in this case. To fix our ideas, we set u, = 0 and choose y = 1.5 and 
u, = 1. After several initial iterations the odd and even approximations practically cease to 
change any more, but lie on different curves represented by the dashed curves in Fig. 1. The 
exact solution (the solid line) lies between them. 

The following turns out to be an effective method of removing the divergence. We multiply 
both sides of (2.4) by u(q) and introduce the notation 

The equation equivalent to (2.4) written in these terms is a quadratic algebraic equation. Its 
positive root is equal to 

(3.1) 

As has been demonstrated by computations, the successive approximation scheme for (3.1) 
converges. In the limit as 1 + 00 the equivalent form of (2.9) is 

(3.2) 

In Figs 2-4 we present the computed dependence of the dimensionless pressure p,,, width V, 
at the centre, the crack radius 1, and the volume w of the flowing material on the degree of filling 
y. Curves l-4 correspond to V, = 0 (the case of a weightless medium), Us = 0.2463, U, = 0.4424, 
and V, = 1.023. The dot-dash line marks the boundary of the domain of existence of the solut- 
ion. As U, increases, the minimum admissible degree of filling y is seen to increase, approach- 
ing 7r/2 in the limit. This means that for large external loads P, the most typical situation is that 
of complete penetration of the crack by the filler (y = 7r/2). As can be seen in Fig. 2, the pressure 
at the crack centre does not fall to zero when the crack increases without limit, as in the planar 
case [5], but tends to a fiite limit; the larger the external load the higher the limit. 

The pressure and crack width profiles, p and vcoscp, for U, = 0.4424 are presented in Fig. 5 for 
various values of y. The dependence of the pressure p. at the centre on the crack radius I is 
shown in Fig. 6. Curves l-4 correspond to the same values of U, as in Figs 2-4. The dot-dash 
line represents the curve p. = p&y, us) for y = 7~12. One can see that after the filler breaks away 
from the edge there is little change of pressure inside the crack as the crack increases; the larger 
the external load the smaller the change of pressure. 

At any instant of time the state of the crack is determined by the pair of parameters (y, us). In 
practice it is more convenient to specify external parameters such as P, and R. The transition 
from (y, u9) to (P,, i2) is given by (2.3) and the expression 

01~ = L2P. /(4ti:T,) (3.3) 

obtained using (2.1) and (2.2). The right-hand sides of (2.3) and (3.3) depend only on P,, !2 and 
the constants of the problem, while the left-hand sides depend only on y and v,. The 
corresponding values of U, p and 1 can be found after determining y and V, from (2.3) and 
(3.3). The dimensional parameters and variables can then be determined from (2.1) and (2.2). 

4. The results can be generalized to the case of complete penetration of the crack by the filler 
and to the problem of a crack of fixed radius. We note that in the first case the pressure P(L) on 
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the crack edge corresponding to the given load P, at infinity and the volume L2 of the filling 
material inside the gap is finite, in general. When solving the problem it proves more convenient 
to choose the formal governing parameter to be P(L) rather than L2. Strictly speaking, we mean 
by P(L) the value obtained from the solution based on the approximation (l.l), rather than the 
actual value. In the problem in hand this approach would seem to require more precision, 
which could involve a significant change of pressure in a small neighbourhood near the edge, 
where (1.1) is not satisfied. But the pressure at the edge is of little interest in its own right. 
According to Sneddon’s formula, the width of the crack is determined by the pressure curve as a 
whole. It can be shown that in relation to the crack radius the dimension of the domain 
considered near the edge is of the same order as the square of the characteristic strains in the 
elastic medium. Thus, when remaining within the framework of linear theory of elasticity, it 
makes no sense to increase the accuracy of the pressure variations at such short distances. Such 
corrections are therefore neglected in what follows. 

The problem can be reduced to the previous case by the following method. We imagine that 
the state of strain of the elastic medium under consideration has been obtained in two stages. At 
first, the crack was filled under the reduced vertical load P, - P(L) at infinity. In this case, the 
load at the crack edges tends to zero as the edge is approached and one can apply the formulae 
of Section 2, setting y = n/2. At the second stage a negative normal load P(L) is added at 
infinity and on the crack edges, so that the deformations at the second stage are homogeneous 
and do not cause any displacements in the cut. This is essential because of the non-linearity of 
the integral equation determining the width. The resulting state of the medium and the crack 
obtained in this way will correspond to the specified values of P, and P(L). 

We will change in the usual way to the dimensionless pressure on the edge, which we will 
denote by p, =p(d2). It can be shown that for p, > 0 the integral equation (2.4) can be 
transformed into 

xl’ A(%‘# 

i.e. it can be reduced to the special case (2.4) when y = rc/2 and V, + pg -p,, and depends only 
_ _ 

on one parameter pg -p,. At the same time the total pressure distribution p(q) in the crack is 
determined, as it should be, by two parameters, for example, ps and p,. This distribution and, 
in particular, the value p. of the pressure at the centre can be computed from the formula 

which generalizes the first relation in (2.7). 
Everything described above has been done under the assumption that K,, = const. However, 

the basic dimensionless equation (2.4) does not contain any information on the crack 
dimensions L or the value of the stress intensity factor K. This enables us to use the equation 
also in the case when, for example, K, depends on the velocity of motion of the edge [9]. Indeed, 
the problem can be solved for any instant of time and any value K,,. In particular, the 
dimensions of the crack and, consequently, the velocity of the edge can be determined at any 
instant of time. The problem of matching K,, with the velocity of the edge can be reduced to a 
purely algebraic problem. 

Equation (2.4) is also applicable in the case when the crack is in a subcritical state with fixed 
radius. The only difference is that K rather than L will be the variable quantity when one 
changes to dimensional variables in the corresponding formulae. One can introduce K. and k 
in place of Z+ and I using the formulae 

K=K,k, K, =,/m 
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Using (1.5) and the formulae for changing to dimensionless variables, we find that k = v,. In 
Fig. 7 we show the dependence of the parameter k, characterizing the stress concentration on the 
crack edge, on the degree of filling +r. Curves l-4 correspond to the same values u, as in Figs 2- 
6. The intersection of each curve with the abscissa axis indicates that the crack fails to be fully 
open for smaller values of y, i.e. the edges close smoothly at a radius smaller than the 
dimensions of the crack. 

We wish to express our thanks to T. S. Khripkov for his assistance with the computations. 
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